Secret Ingredients

| FROM THE PRINT EDITION |
 
 

We have the best seafood and the finest coffee. But let’s not fool ourselves. Like the rest of the country, we are actually spending less of our money on fresh, raw ingredients and more on processed convenience foods than ever before. According to the U.S. Bureau of Labor Statistics, American households now spend more on processed foods than on any other category of food—and twice as much as they did in 1982.

But the Northwest has a contribution here, too. The region has a taste for food processing technologies that are already making convenience foods fresher, tastier and longer lasting, and that could revolutionize safety in the years ahead.

Consider salmon. Locals might be able to tell the difference between Copper River sockeye and king fillets at a glance, but much of the country lives thousands of miles from fresh seafood and has to make do with canned meat and premade ready meals. “When you put a salmon fillet into a canned product and run it through a conventional thermal process, the damage is so severe you don’t see the original shape,” says Juming Tang, professor of biological systems engineering at Washington State University (WSU).

Conventional processing involves vacuum packing the food in a can or a pouch, then putting it through a pressure cooker at temperatures above 212 degrees for more than an hour to kill most of the bacteria (although some highly acid foods can make do with lower temperatures). Not only does this method alter the appearance and texture of the original food, making it drier and less appealing to the eye, but it also breaks down critical nutrients, such as the beneficial omega-3 oils in salmon.

During the past few years, Tang’s team at WSU has been developing new microwave-based technology for food preservation that addresses some of those issues. Its Microwave-Assisted Thermal Sterilization (MATS) system immerses packaged food such as salmon or pasta in pressurized hot water while simultaneously heating it with microwaves at a frequency of 915 megahertz—a frequency that penetrates food more deeply than the 2,450 MHz used in domestic microwave ovens.

This combination eliminates food pathogens and microorganisms in five to eight minutes, with far less effect on the food. “We can see texture difference, color difference and an appearance totally different from conventionally processed products,” says Tang. “And we can show a much higher retention of nutrients.” The new microwave system was originally funded by the U.S. Department of Defense’s Combat Feeding Directorate. Its aim was to produce higher-quality, longer-lasting meals ready to eat (MREs) for troops in the field. The system recently received FDA approval for commercial use.

A package of salmon in cream sauce that has gone through this process still looks and tastes good, and yet can sit on a shelf without refrigeration for as long as six months without spoiling, says Kevin Petersen, who licensed the technology from WSU and launched a company called Food Chain Safety to commercialize it. With early financing from such heavyweights as Mars Incorporated and Kraft Foods, and later from Hormel Foods and Ocean Beauty Seafoods, he hired a team that has taken the 120-foot-long machine Tang developed to process six items a minute and designed a machine that’s one-sixth the size. The device was installed at AmeriQual, a commercial food processor in Indiana that produces processed food for the military. NASA has also expressed an interest in producing food for use at the International Space Station. Food manufacturers and government agencies from Brazil and India, where refrigeration remains a challenge, have shown interest in the technology, too.

Right now, the machine is assembled in Tennessee from parts made by seven different suppliers, but Petersen hopes to build an assembly plant in Washington state along with a full-blown laboratory.

“The key is to prove it can function in a commercially viable operation,” says Petersen. Food Chain Safety is working on a prototype machine that can process the food much faster.

If the technology proves viable, it could have a dramatic impact on the food sector. Food companies envision producing ready-made dinners that are higher in quality than frozen dinners but can sit on a shelf, unrefrigerated, for months. Vegetables also look and taste better. The old-fashioned thermal process, for example, virtually destroys delicate vegetables like broccoli, which, with the microwave system, emerges intact and appetizing after sterilization.

A similar microwave process has been used in Europe for many years, but failed to receive FDA approval because it doesn’t heat items evenly enough to assure all bacteria are destroyed.

Heat is one way to kill microorganisms but another, which has been known for more than 100 years, is pressure. Subject bugs to sufficiently high pressure and their cell walls collapse, rendering them harmless without damaging the food itself. Listeria, E. coli, salmonella, yeasts, molds and even viruses can be inactivated in this manner, but there is a catch. The amount of pressure required to kill all bacteria is almost unbelievably high: 85,000 psi, or five times the highest pressure found naturally on Earth, at the deepest point on the ocean floor.

Nevertheless, several companies around the world have been working to introduce high pressure processing, or HPP. One was Flow International Corporation, a Kent-based company founded in the 1970s by former researchers at Boeing  to commercialize ultra high-pressure water jets as industrial cutting tools. In the 1990s, Flow launched a high-pressure system, dubbed Fresher Under Pressure, which pasteurized food without heat. Its first food product was guacamole, but early machines proved slow, unreliable and expensive. Flow eventually sold its Avure Technologies unit and the high-pressure portion of the food business. Last year, Avure moved from Kent to Franklin, Tennessee.

“Unlike heat pasteurization, which has to heat its way all through to the middle of the food, pressure is instantaneous,” says Glenn Hewson, vice president of global marketing of Avure. “You can take a product in its final packaging and there’s no effect on cooked meats, seafood, vegetables or deli salads. Talking about it is easy, but actually doing it is pretty hard. Our cost to process a pound of guacamole was tremendous.”

Avure’s latest machines can process seven times the volume of food as its initial models, and will run reliably up to 22 hours a day. The cost, at between 4 and 8 cents per pound, is still above that of heat pasteurizing bulk liquids like orange juice, but is comparable with, or even cheaper than, traditional methods for preserving delicatessen meats.

“It also means you can eliminate or greatly reduce the use of preservatives while getting tremendous shelf life, typically double or more than before,” says Hewson. “Hormel Foods now has certain products pasteurized with high- pressure processing that are getting over 250 days of shelf life. An orange juice, done right, can last six months.”

Such ultra-extended shelf life come swith its own problems. Consumers familiar with meats and salads that spoil within a week can be suspicious of packages claiming “use by” dates a season or two into the future. “When Hormel marketed their sliced meats with 100-day shelf life, they started getting calls and emails,” says Hewson. “Most companies using HPP now market around 21 days.”

Many manufacturers have chosen not to publicize their use of the high-pressure technology, instead operating in a stealth mode where they gain the benefits of longer-lasting, fresher-tasting food without having to explain a potentially confusing new technology to consumers. Here, again, a Seattle company is taking a more innovative stance.

Buy an Evolution Fresh juice at a Starbucks and you will see each bottle proudly claiming that it was made using high-pressure processing, highlighting the fact that the juice is never heated. “We are setting a new standard in cold-crafted juice,” says Jeff Hansberry, Starbucks’ president of channel development and emerging brands. “We are making real juice that has more of the nutrients and flavors from the fruits and vegetables from which it comes.”

Starbucks bought Evolution Fresh late last year and recently opened its first stand-alone store in Bellevue, serving fruit and vegetable juices, protein drinks and smoothies. As Hewson notes, “Starbucks is the big gorilla in coffee shops, but they’re nobody in the super premium juice business. Their competition is Naked, owned by Pepsi, and Odwalla, owned by Coca-Cola. Starbucks is differentiating by marketing the fact they use HPP.”

Seattle is also home to a company at the very cutting edge of food safety. Seattle Sensor Systems is a startup selling a new type of scanner that promises to revolutionize the production and analysis of local foodstuffs. Its Spirit device, now in the early stages of commercialization, allows researchers to carry out molecular detection tests anywhere from the factory floor to the region’s rivers and coastlines. It can detect, in minutes, anything from traces of peanut on production lines to deadly “red tide” toxins in Puget Sound shellfish.

“Spirit is capable of detecting complex molecules like toxins, but also viruses and bacteria,” explains Steve Dearden, sales and marketing director at Seattle Sensor Systems. “You can even detect particular sequences of DNA and RNA genetic code, so you can tell very exactly what the pathogen is that you’re looking for.”

Spirit works using surface plasmon resonance, which, if anything, is more complex than it sounds. Basically, it uses the fact that light is absorbed in slightly different ways by different test materials placed on a metal (usually gold) surface. The science has been understood for many years but existing detectors are bulky and cost upward of $300,000. The portable Spirit device was devised by researchers at Texas Instruments and the University of Washington before being spun out to Seattle Sensor Systems. It can detect four different materials at once and is being sold for $35,000.

“We are now in the process of homing in on different applications and looking for commercial partners,” says Dearden. “We’ve got a pilot project using this to detect algae in seawater so we can predict when ‘red tide’ blooms are going to take place. We’re also doing very rapid testing to detect whether you’ve got toxin accumulation in shellfish samples. Eventually, you might be able to put an oyster in one end of a device and there would be a red or green light at the other.”

Spirit detectors could allow manufacturers to check in moments whether cleaning had been effective in removing potential allergens likes peanuts, egg and milk, or to hunt for bacteria in high- volume processing applications such as a chicken plant. However, the system is likely still a few years from being found in every factory and farm. “It’s very easy for us to show we can detect something,” says Dearden. “But then you have to repackage the technology to make it easy for a food-line worker or somebody working on the shellfish beds to use. It’s likely that we’ll have a manufacturing partner at that point.”

High-quality processed foods, zingy juices and peanut-free candy bars may not have the glamor of cedar plank salmon and fresh geoducks, but as the nation’s appetite for convenience grows, Seattle’s nutritional tech sector means that its foodie credentials are still very much on the menu.

But don’t count on this great technology’s leading people to eat more healthful foods. When the military took a survey of what soldiers wanted to eat most in the field, says Petersen of Food Chain Safety, the most frequent responses were hot dogs and pizza. 

Welcome to the Drone Economy

Welcome to the Drone Economy

A new industrial sector is arriving — and nobody’s at the wheel.
| FROM THE PRINT EDITION |
 
 
 
Jim Tracy runs a company that maintains and repairs wireless communications towers, many of them in some of the most rugged and remote country across eight Western states.  Just getting to the towers sometimes requires off-road vehicles and snowcats, says Tracy, the CEO of Legacy Towers in the Kitsap County community of Burley. Then there’s the climb up the towers, which can range in height from 100 feet to 1,700 feet. Aside from the risk posed by the height, there are other hazards presented by things like the weather or nesting wasps. And if inspection of the relay antennas at the top reveals the need for a part or a tool the technician didn’t bring up on the first trip, there’s another climb down and back up to be made. If only there were a way to inspect towers for hazards and to diagnose the problem from the ground, reducing risks and time spent on the job.  But there is, one already known to amateurs and hobbyists and one increasingly being used in scores of businesses — the drone, or, more properly, the unmanned aerial vehicle (UAV).
 
Legacy Towers got its first UAV in late 2013 and has found them useful in making climbers safer and their tasks more efficient. “If you can throw a drone in there,” Tracy explains, “you can cover more ground with less fuel use.” A camera-equipped drone can be dispatched to the top of a tower to read the bar code on an antenna, look for damage or check to see if it has been knocked out of alignment.
 
“The first one you get, it’s kind of cool,” Tracy acknowledges. “[But] at the end of the day, it’s just another tool.”
 
The power and potential in that tool are such that people are finding applications faster than technology developers or regulators can keep up. They’re also finding more places to deploy these devices.  Most of the attention has gone to things that fly — think Amazon’s experiments with drone deliveries — or operate on the highway, with Google, Tesla and every major auto manufacturer pursuing hands-free operation of cars. But driverless/pilotless/autonomous vehicles are also finding their way to, and doing work now, on rail networks, on farms and on the seas.
 
In the process, the people who write the software; make the antennas, sensors and other pieces that make the technology possible; build the trucks, cars, planes and boats that employ it, and apply it to problem solving in virtually every industry, as well as to those who collect and analyze data from drones, are building what might be called, for lack of a better term, the Drone Economy.
 
This drone economy isn’t a “maybe someday” promise of a flourishing economic sector. It’s already here. Much like the developing local space-business cluster (Seattle Business, January 2016), Washington is becoming one of the nation’s centers of research, development and commercialization of drone tech, with dozens of companies actively involved in it.
 
Creation of a new job-generating tech sector won’t be the only way the Drone Economy’s influence will be felt, either in this region or globally. Entire industries, and not just those dealing directly in transportation, stand to be reshaped by the products and services they already are bringing to market.
 
The activity and potential of the Drone Economy has caught the eye of state government, which in October convened the first meeting of the Unmanned Systems Industry Council. John Thornquist, who heads the state’s Office of Aerospace, says the council’s purpose is to get people in the industry talking to one another and to officials at all levels of government, to hash out issues that may limit the sector’s potential and “to help that ecosystem thrive.”
 
The idea of cars, boats, trains and planes that pilot themselves has been the stuff of science fiction and futuristic museum displays for decades. Some pieces of the technology have been around for years as well, as any kid with a remote-control car, boat or plane can attest. Real-world, full-size applications aren’t rare, either. Sea-Tac Airport’s subway system between terminals operates without on-board drivers. So does the SkyTrain system in Vancouver, British Columbia. Remote-controlled locomotives have long been used in switching yards.
 
But those applications are in closed spaces or networks, and the rail industry has had much less success applying the technology to long-distance freight networks. The Drone Economy is being built on the idea of getting autonomous vehicles, aircraft and vessels onto roads, into the skies and on the water.
 
A convergence of factors allows this transition to happen. Paul Kostek, a past president of the IEEE Aerospace and Electronics Systems Society and a Seattle-based contractor and consultant to tech companies, says the technologies that make autonomous vehicles and aircraft possible started out as solutions to other problems. In aviation, for example, where “weight and space are always critical,” the continuous drive for lighter and stronger materials made drones possible by dramatically shrinking the size, weight and power requirements. In automobiles, technologies developed to make driving safer, such as parking assistance and collision warning and avoidance systems, can easily be extended to help remove a human driver from the process.
 
 
Jim Tracy of Legacy Towers sees drones as another handy item in the toolbox.
 
Drone development has also borrowed from technology developed for use in fields outside transportation. WiBotic, a University of Washington-based business developing wireless recharging systems for aerial, marine and land drones, started with a charging platform for implantable medical devices like artificial heart pumps. “Drones need a way to scale in a way that power is not going to be a limiting factor,” says Ben Waters, WiBotic’s cofounder and CEO.
 
Technology has improved not just the vehicles themselves but also the images onboard cameras produce (thanks to stabilization) and the flight controls for operating UAVs. Adoption of the technology in the commercial sector has been accelerated, Thornquist says, by the low cost to buy and try one, and the often quick return on investment.
 
Kostek cites one other important factor propelling the Drone Economy: “Very rich people are interested in this.” With people like Tesla’s Elon Musk and companies like Google putting money into drone development, Kostek says the sector, much like commercial space, is being driven by “outsiders with capital to spend.”
 
Consumers also deserve credit for taking what were dismissed as toys and demonstrating their commercial potential, particularly for aerial photography, Waters notes. “They provided a unique perspective on how to do things.”
The result: An explosion of R&D and commercialization, much of it driven by a passel of regional companies and institutions:
 
■ Boeing-subsidiary Insitu, based in the Columbia Gorge town of Bingen, has been regularly winning multimillion-dollar contracts from the military for its surveillance drones. The company has expanded its commercial products and services, set up a business unit specifically for that purpose and participated in a project with BNSF Railway to use drones to inspect rights of way in remote areas.
 
Aerovel, based in White Salmon and founded by Insitu alumni, has been developing drones small enough to be launched from a fishing vessel, to look for schools of fish. An Aerovel Flexrotor was used to provide aerial scouting of routes through the ice of the Beaufort and Chukchi seas for a workboat fleet retrieving mooring anchors.
 
■ Thanks to Insitu, the Columbia Gorge has developed a mini-cluster of drone-related companies like White Salmon-based 
Sagetech Corporation, which makes small transponders to identify and control military and civilian drones.
 
■ Bellevue-based Paccar was playing with remote-control technology at its Mount Vernon research center as far back as the 1990s. More recently, it showed at an annual meeting a video of a demonstration of maneuvering and parking a truck at a Walmart distribution facility. Its European subsidiary DAF was one of a half-dozen truck manufacturers participating in an on-highway test of platooning — a tightly spaced convoy of trucks in which the trailing vehicles are driverless.
 
■ Few industries have leapt into drone technology with the enthusiasm of agriculture. Washington State University’s Center for Precision and Automated Agricultural Systems in Prosser has multiple research projects underway, including using an eight-rotor octo-copter to monitor irrigation in vineyards.
 
■ If you’re going to have a drone industry, you might want to have people trained in their operation and maintenance. Green River Community College offers an associate’s degree in unmanned aerial systems and a certificate for UAV operators; Big Bend Community College in Moses Lake has launched programs in mechatronics, sensor analysis and flight operations.
 
■ The University of Washington’s College of Engineering, meanwhile, has its Autonomous Flight Systems Laboratory to “support advances in guidance, navigation and control technology” for UAVs, and to integrate the technology into flight mechanics and controls courses in the university’s Department of Aeronautics and Astronautics.
 
■ Tech-sector senior statesman Tom Alberg, cofounder and managing director of Madrona Venture Group, co-authored a widely discussed think piece proposing the devotion of part of Interstate 5 between Seattle and Portland to autonomous vehicles. “We cannot predict the specific adoption rate for autonomous vehicles, but we believe that widespread adoption of autonomous vehicles is inevitable and will be here sooner than most observers expect,” the essay says.
 
■ Alberg adds Madrona has been backing its belief in the coming of the drone/autonomous age with a significant investment in Bellevue-based Echodyne Corporation, which is developing small, lightweight radars that could be used in UAVs and autonomous vehicles.
 
Clockwise from left: Aerovel's Flexrotor is designed to operate over oceans and remote areas; WSU Professor Lav Khot
prepares to fly an octo-copter over a vineyard; an Autel Robotics drone equipped with WiBotic wireless power solutions.
 
A drone economy could well reshape businesses directly involved in the production or use of UAVs. Commercial real estate services firm CBRE recently issued a report on the impact of technologies including autonomous vehicles on its industry. Driverless trucks, for example, will increase the distance and hours those vehicles can operate, reducing costs. Supply chains will be able to operate with fewer but larger distribution centers, but those warehouses will have to be built to receive and deploy the new generation of autonomous delivery trucks.
 
The speed with which technologies are being readied for market is also one of the barriers to their adoption, as lawmakers and regulators scramble to keep up and deal with thorny practical issues like safety, liability and traffic management on the ground and in the air (e.g., how do vehicles and aircraft operate in the same space at the same time?), not to mention broader societal issues such as privacy and job gains and losses.
 
“The technology is going to be ready before the world is ready,” says Paccar President and CEO Ron Armstrong.
 
Mike Dozier, general manager of Kenworth, a Paccar subsidiary, says many of the technologies that make autonomous trucks possible have been showing up on trucks for years — lane-departure warning systems, drowsy-driver monitoring, even adaptive cruise controls that use GPS data to tell the engine to apply more power when the vehicle is approaching an uphill grade.
 
The truck is packed with data-generating sensors and equipment, for which costs have been steadily declining, adds Paccar SVP Kyle Quinn. The issue, Quinn points out, has been “how do you manage all the information coming off the sensors and interpret it?” 
 
Answer: creating breakthroughs in image processing and artificial intelligence. In other words, software is starting to catch up with the capabilities of hardware.
 
It may be some time before drivers are banished from the truck cab, the Paccar brass cautions. Drivers have duties beyond steering, accelerating and braking, such as securing the load and making sure it stays in place. They’re also needed to handle unexpected situations that autonomous systems aren’t sure how to manage.
 
Still, none of those barriers seem as daunting as what the commercial space business faces, and it’s been able to grow in spite of the challenges. Further, if regulators aren’t moving as fast as many advocates of drones and driver-free vehicles would like, they also aren’t saying, “No way.” 
 
For example, the Federal Aviation Administration issued its Part 107 compendium of rules in mid-2016 to govern use of commercial drones according to weight, speed, height, operator certification and other criteria. While it’s a long list, it does give those interested in the technology’s use some certainty. The FAA has also authorized research projects on flying UAVs beyond the operator’s line of sight, such as the Insitu-BNSF experiment.
 
The industry itself can do a lot to allay some of the safety fears of regulators and the public, Waters says, by “moving reliability from pretty high with top-of-the-line consumer devices” to commercial units with virtually no potential points of failure, and which have safety devices in place in cases of power loss or collision.
 
The technology also has the potential to mitigate problems it creates and solve others. Driverless trucks, for example, threaten the jobs of drivers. But the trucking industry has long been dealing with a chronic shortage of drivers; the American Trucking Associations reported the turnover rate at large fleets was 83 percent in the second quarter of 2016. And even as they eliminate jobs in some sectors, drones and other autonomous vehicles could create more in others. The FAA news release on approval of Part 107 says the new rules could help generate more than 100,000 new jobs in the next 10 years. 
 
Regulators and legislators will be under pressure to keep up with the explosion of applications. Forest fires can be monitored closely but safely. Insurance companies can inspect storm damage on homes — and transmit images to the home office — without sending an inspector onto a potentially precarious roof. Kostek, a resident of Seattle’s Green Lake neighborhood, came up with the idea of using drones to monitor the lake’s health. Farmers are already working with autonomous trackers guided by GPS. Underwater drones can inspect boat hulls. A local police department has used aerial drones to document auto accident scenes, allowing officers to reopen roads sooner.
 
Waters expects the boom to be even bigger in a few years, when companies now seeking  funding bring their products to market.
 
Kostek agrees. “We’re still early, early on as to how these technologies will be applied,” he predicts. “Somewhere, there’s a smart kid playing around with an idea none of us has thought of.”