EnerG2's Innovative Storage Solutions

Engineered carbon gives batteries a boost.
Leslie D. Helm |   January 2013   |  FROM THE PRINT EDITION
From left, EnerG2 CTO Aaron Feaver, CEO Eric Luebbe and COO/CFO Chris Wheaton.

In virtually every industry sector, whether it’s next-generation automobiles, smartphones or electricity generation, there is a common challenge: finding efficient, effective and low-cost ways to store and deliver energy. EnerG2 Technologies, a small Seattle startup with big ambitions, has developed a process for custom-designing carbon materials that could help battery makers take on many of those challenges.

The technology’s potential was regarded as significant enough to attract a $21.3 million grant from the U.S. Department of Energy to help pay for a new factory in Oregon. EnerG2 has also attracted more than $17 million from venture capitalists, including OVP Venture Partners of Kirkland/Portland and Firelake Capital Management of Palo Alto. In addition, the state of Washington  provided a $1.8 million grant and loan package.

“We’re going to help create a new industry that will then supply the automotive industry and suppliers to the automotive industry,” says Chris Wheaton, the firm’s 40-year-old COO and CFO. Founded in 2003, privately held EnerG2 has 30 employees at its Seattle headquarters and 10 full-time people at its 74,000-square-foot plant in Albany, Oregon. Wheaton has lofty goals. “Hopefully, someday we’ll be as well known as some of the Amazons, Microsofts and other technology companies that have changed the world,” he says. “That’s our aspiration.”

Wheaton co-founded EnerG2 with CEO Eric “Rick” Luebbe. Luebbe says the new carbon material is being tested by battery makers who see a large market for new-generation batteries to be used in new generations of microhybrid cars automakers will release in growing numbers in coming years.

These cars can reduce fuel consumption by up to 10 percent simply by having the engines turned off every time the car idles. The on-again, off-again nature of these engines requires them to draw repeatedly from the batteries, quickly degrading them. EnerG2 produces a carbon material which, when used to traditional lead-acid batteries, causes them to last longer in this kind of severe duty cycles while also storing three times as much energy.

So what is this amazing carbon technology? Basically, it starts with the creation of a resin polymer with high elemental carbon content. The material then goes through a freeze-dry process that removes the moisture, leaving a porous carbon skeleton that vastly increases the surface area in the carbon, which is the storage medium for the energy in the devices. “We think the active carbon is behaving like a capacitor